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Referring to a recently presented waveguide model [1, 2] the dependence of the dynamic
sti!ness on the radius and length of cylindrical vibration isolators can be determined. It
constitutes a major practical application; in particular, predicting the dynamic sti!ness
alteration due to change in geometry of a given isolator. While changing the geometry it is,
for example, found that the dynamic sti!ness curve, in general, shifts to higher frequencies as
the isolator shortens and that the magnitude of the peaks increases sharply with increased
isolator radius. This is not surprising, but this is: some sti!ness peaks move along the
frequency axis while changing the radius; occasionally, peaks and troughs develop or
disappear while changing the radius or length, and, "nally, the sti!ness phase, sporadically,
jumps as the isolator radius or length alters. The latter, interesting phenomenon is
illustrated in this Letter.
Consider the cylindrical vibration isolator in Figure 1, length ¸ and radius R, made of

rubber with density � and equipped with bonded circular steel plates. The isolator is excited
at one end, while being blocked; that is, zero displacement, at the opposite end. The blocked
dynamic driving point and transfer sti!nesses are de"ned as kI
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respectively, where u is the displacement, f is the force and ( )I )"��
��
( ) ) exp (!i�t) dt is the

temporal Fourier transformation with i denoting the imaginary unit, � the angular
frequency and t the time. The shear modulus of rubber is modelled as a fractional
Kelvin}Voigt model [3]
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where the equilibrium shear modulus �
�

"5)9355�10�N/m� ; �"2)9700�10�� and
��"5)9944Ns/m�. The resulting shear modulus in Figure 2 is typical for a crosslinked
rubber; its magnitude and loss factor increase slightly with frequency within the considered
frequency range 0}1000 Hz. Moreover, the rubber is assumed to be nearly incompressible
with compression relaxation function � and equilibrium shear modulus being dependent as
� (t)"b�

�
h (t), where the material constant b"2)2220�10� and h is a step function,

resulting in a constant bulk modulus 1)3189�10�N/m� and the equilibrium Poisson ratio
4)9978�10��. The waveguide theory relies upon the dispersion relations for an in"nite
cylinder, already developed by Pochhammer [4] and Chree [5] in the 19th century, where
the axial dependence is separated and the eigenvalues and eigenmodes of the cross-section
are calculated. The total "eld is then obtained by eigenmode superposition while matching
them to the cylinder end boundary conditions.
0022-460X/02/120373#04 $35.00/0 � 2002 Elsevier Science Ltd.
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Figure 1. Vibration isolator and exposed junction variables including the blocking force.
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Figure 2. Shear modulus magnitude ��( � and loss factor Imag �L /Real �L versus frequency.
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The transfer sti!ness, in the narrow frequency band 723}733 Hz, is in Figure 3 for an
isolator with �"1)0500�10� kg/m� , R"5)0000�10��m and ¸"¸

�
$n¸� , where

¸
�
+5)757�10��m, ¸�"0)5�m and n"1,100. The curves corresponding to ¸"¸

�
#¸�,

¸
�
!¸� , ¸�

#100¸� and ¸
�
!100¸� are plotted in solid, dotted, dashed and dash}dotted

lines respectively. The sti!ness phase curve is displayed unwrapped with respect to phase
starting at 0 Hz.
Clearly, the solid and dotted phase curves jump instantaneously$1803 at f

�
+728)4 Hz

as the isolator length alters 1�m only; the!1803 jump may be interpretable as a complex
mode pattern governed antiresonance, while the#1803 jump as a resonance. The ensuing
phase di!erence is, however, &3603; thus, resulting in a subsequent (wrapped) sti!ness
phase coincidence. The number of eigenmodes applied in this analysis is large; namely 256
(128 with positive and 128 with negative real-part eigenvalues). The overall sti!ness
di!erence between this solution and a solution with more eigenmodes, for example 512, is
negligible ( f ��	

�
"728)41Hz, ¸��	

�
"5)7573�10��m; f ���

�
"728)48Hz, ¸���

�
"5)7565�

10��m); thus, verifying the waveguide solution convergence. The sharp pitchfork phase
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Figure 3. Dynamic transfer sti!ness in a narrow frequency band of 723}733Hz. Length: ¸"¸
�
#¸� (solid),

¸
�
!¸� (dotted), ¸

�
#100¸� (dashed) and ¸

�
!100¸� (dash}dotted), where ¸

�
+5)757�10��m and

¸�"0 ) 5�m.
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&&bifurcation'' curve is smoothed as the length di!erence increases; this is clearly illustrated
in Figure 3 by the dashed and dash}dotted phase curves representing an isolator length
di!erence of 0)1 mm.
Next, the transfer sti!ness magnitude is studied. The solid and dotted magnitude curves

to the right in Figure 3, representing an isolator length di!erence of 1�m, almost coincide
while developing a deep, sharp trough at f

�
. In theory, lim kI

�
(f,¸)"0 as f,¸Pf

�
,¸

�
, while

the &&half-power bandwidth'' � f
�
of the trough shrinks to zero; surprisingly, as the shear

modulus loss factor of the rubber is approximately 13% at f
�
in Figure 2. Consequently,

large errors may be introduced using �f
�
/ f

�
of a sti!ness trough, as a measure of material

damping. Sharp, deep sti!ness magnitude troughs in connection with phase jumps are also
detected in rubber isolator measurements [6] and in "nite elements analysis*the author to
this Letter verifying the phenomenon*using the method presented in reference [7]. What
about driving point sti!ness behavior? The deep, sharp magnitude troughs and sudden
phase jumps disappear; not surprising as 0)L kI

�
)1803 on physical grounds; thus,

forcing the driving point resonance and anti-resonance order to be consecutive.
In summary, the transfer sti!ness is found to occasionally develop a deep, narrow

magnitude trough with a sudden phase jump while changing the isolator length or radius.
The method applied is a newly developed waveguide model where the rubber is modelled as
nearly incompressible with deviatoric viscoelasticity based on a fractional order derivative
model. The main advantage of the fractional Kelvin}Voigt model is the small parameter
number required to successfully model the material properties over a broad structure-borne
sound frequency domain. However, the sudden phase jumps and sharp magnitude drops for
the driving point sti!ness, disappear as the resonances and anti-resonances are required to
alternate.
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